

Exact ordinary differential equations

We say that an ODE is exact if its general representation is:

$$P(x, y) \cdot dx + Q(x, y) \cdot dy = 0$$

And there must exist a function $U(x, y)$ called the potential function, such that:

$$dU(x, y) = U'_x dx + U'_y dy \Rightarrow U'_x = P(x, y) \text{ and } U'_y = Q(x, y)$$

Since $dU(x, y) = 0$ when the functions $P(x, y)$ and $Q(x, y)$ are equal to the partial derivatives of $U(x, y)$:

$$U(x, y) = C$$

For the equation to be exact, it must satisfy the symmetry condition: $P'_y = Q'_x$

$$\begin{cases} \frac{\partial U}{\partial x} = P(x, y) \rightarrow \int dU = \int P(x, y) dx = F(x, y) + \alpha(y) \\ \frac{\partial U}{\partial y} = Q(x, y) \rightarrow \int dU = \int Q(x, y) dy = F(x, y) + \beta(x) \end{cases}$$

$$\Rightarrow U(x, y) = F(x, y) + \alpha(y) + \beta(x) = C$$

The integration constant depends on x , since having previously derived with respect to y , a term dependent on the other variable could have been lost.

Example:

$$(2x^3 + y) \cdot dx + (x + 2y^2) \cdot dy = 0$$

For the equation to be exact, it must satisfy the symmetry condition: $P'_y = Q'_x$

$$P'_y = 1 \text{ and } Q'_x = 1 \Rightarrow 1 = 1$$

$$\begin{cases} \frac{\partial U}{\partial x} = (2x^3 + y) \rightarrow \int dU = \int (2x^3 + y) dx = 2\frac{x^4}{4} + xy = \frac{x^4}{2} + xy \\ \frac{\partial U}{\partial y} = (x + 2y^2) \rightarrow \int dU = \int (x + 2y^2) dy = xy + 2\frac{y^3}{3} \end{cases}$$

$$\Rightarrow U(x, y) = F(x, y) + \alpha(y) + \beta(x) = xy + \frac{x^4}{2} + 2\frac{y^3}{3} = C$$

Solution:

$$xy + \frac{x^4}{2} + 2\frac{y^3}{3} = C$$

Example 2:

$$(3y + e^x)dx + (3x + \cos(y))dy = 0$$

Let's verify if it is exact.

$$P'_y = 3 \quad \text{and} \quad Q'_x = 3 \quad \Rightarrow \quad P'_y = Q'_x$$

We calculate:

$$U(x, y) = \int P(x, y)dx = \int (3y + e^x)dx = 3yx + e^x$$

$$U(x, y) = \int Q(x, y)dy = \int (3x + \cos(y))dy = 3xy + \sin y$$

Finally, the solution to the differential equation is:

$$3yx + e^x + \sin(y) = C$$